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ABSTRACT. This is a survey of interpretations of gq-hypergeometric orthogonal polynomials on
quantum groups. The first half of the paper gives general background on Hopf algebras and quantum
groups. The emphasis in the rest of the paper is on the SU(2) quantum group. An interpretation
of little g-Jacobi polynomials as matrix elements of its irreducible representations is presented. In
the last two sections new results by the author on interpretations of Askey-Wilson polynomials are
discussed.

1. Introduction

Quantum groups, recently introduced by Drinfeld [11], Woronowicz [49] and Jimbo [16], are
fascinating objects, where many different structures meet and with applications in numer-
ous areas. In the present paper we want to emphasize one application which was overlooked
by the founding fathers of the theory: the interpretation of ¢-hypergeometric orthogonal
polynomials, quite analogous to the interpretation of ordinary hypergeometric functions
and polynomials on special Lie groups, cf. Vilenkin [47]. So the tremendous amount of new
results on g-special functions during the last 15 years, cf. Askey and Wilson [6], Gasper
and Rahman [14], Rahman [37] is finally matched by a satisfactory “group” theoretic set-
ting. Before the introduction of quantum groups we only knew about interpretations of
g-Hahn and ¢-Krawtchouk polynomials on Chevalley groups (cf. Stanton [40], [41]) and of
g-ultraspherical polynomials with ¢ = 0 on homogeneous trees and SL; over the p-adics
(cf. Cartier [9]).

Until now, the best studied quantum group is $U,(2), the quantum analogue of the group
SU(2). Vaksman and Soibelman [45] were the first to observe that the matrix elements of
the irreducible unitary representations of this quantum group can be expressed in terms
of little g-Jacobi polynomials. The same observation was independently made by Masuda

a. [27], [28] and by the author [21]. Various other classes of g-hypergeometric orthogonal
polynomials have been interpreted in connection with SU,(2), see [32], [33], [17], [18] and
[22). In this last reference an addition formula for little g-Legendre polynomials is obtained
which would have been hard to discover without the interpretation on the quantum group.

Very recently, significant interpretations of special functions have been found on other
quantum groups. On the one hand, there are results on more general “compact” quantum
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groups like SU,(n), cf. Noumi e.a. [34]. On the other hand, work is starting now on quantum
analogues of non-compact Lie groups like the group of plane motions (cf. Vaksman and
Korogodsky [44]) and SU(1,1) (<f. Masuda e.a. [29]).

During the preparation of this manuscript the author obtained an interpretation of contin-
uous ¢-Legendre polynomials as “spherical” matrix elements of irreducible representations
of §U,(2). For ordinary SU(2) the definition of spherical depends on the choice of the
subgroup, for instance S(U(1) x U(1)) or SO(2), but, still, all one-parameter subgroups
are conjugate and thus yield the same spherical functions. However, in the quantum group
case the “subgroups” are no longer conjugate and give rise to different types of “spherical
functions”, for instance little g-Legendre and continuous ¢-Legendre polynomials. Next, by
a further generalization of the notion of spherical element and with some inspiration from
Noumi’s and Mimachi’s recent preprint [32], a similar interpretation could be obtained for a
two-parameter family of Askey-Wilson polynomials. As a spin-off there followed the obser-
vation that one can pass from Askey-Wilson polynomials tolittle or big g-Jacobi polynomials
by taking suitable limits.

The connection which has thus been made between quantum groups and the “master
family” of Askey-Wilson polynomials looks very promising for future research, for instance,
for giving a quantum group theoretic proof of the Rahman-Verma [38] addition formula
for continuous g-ultraspherical polynomials and for interpreting on quantum groups Mac-
donald’s ([24], [25]) g-orthogonal polynomials associated with root systems.

The contents of this paper are as follows. Section 2 is a tutorial presenting the basics
of Hopf algebras. In section 3 we introduce compact matrix quantum groups, in particular
SU4(2). Section 4 deals with the general representation theory, due to Woronowicz, of
such quantum groups. In §5 this is applied to SU,(2), and little g-Jacobi polynomials
are obtained as matrix elements of the irreducible corepresentations of the corresponding
Hopf algebra. Section 6 briefly reviews some further interpretations of special functions on
quantum groups. Finally, sections 7 and 8 deal with the new interpretations by the author
of Askey-Wilson polynomials on SU,(2), for which full proofs will be published elsewhere.
For the case of continuous ¢-Legendre polynomials an idea of the proof is given in §7 in fairly
complete detail. In §8 the main results for the larger two-parameter family of Askey-Wilson
polynomials are just stated.

While reading these expository notes, it may be helpful to consult the tutorials by Rah-
man [37] and Stanton [41] in these Proceedings.

NOTATION. Z, denotes the set of nonnegative integers.

2. Hopf Algebras

Although the term quantum group sounds quite attractive, the name is in fact somewhat
misleading: first, because a quantum group is generally not a group, and, second, because
the relationship with quantum mechanics is, in my opinion, not as clear and unambiguous
as one might wish. If one still wants to get an impression of what is meant by a quantum
group, one way would be to study a number of generally accepted examples of quantum
groups. Another way, following Drinfeld [11], would be to define a quantum group as the
spectrum of a (not necessarily commutative) Hopf algebra. So let us turn to Hopf algebras.



2.1. ALGEBRA OF FUNCTIONS ON A GROUP

The definition of Hopf algebras may overwhelm the uninitiated reader at first confrontation.

Therefore, we will start with a detailed discussion of the guiding example: an algebra of
functions on a group.

Let G be a group. Thus there is a multiplication (z,y) = zy:G x G — G, a unit
element € € G and a mapping of taking the inverse z ++ z71: G — G, which together satisfy
the well-known group axioms. Let A := Fun(G) be some complex associative algebra
with unit consisting of complex-valued functions on the group G, where the multiplication
(a,b) — ab: A x A — A and the unit I € A are defined pointwise:

(ab)(z) := a(z)b(z), I(z):=1 foralzed.
Note that this is a commutative algebra. To start with, one may think about Fun(G) as
the algebra of all complex-valued functions on G.

The group operations induce certain operations on the algebra A:
(1) A comultiplication ®: Fun(G) — Fun(G X G) defined by

(®(a))(z,y) := a(zy), z,y€G.
(i) A counit e:Fun(G) — C defined by
e(a) := a(e).
(iii) An antipode k: Fun(G) — Fun(G) defined by
(k(@)(z) = a(z™"),  z€G.
Note that the mappings ®, e and & are unital algebra homomorphisms.

We will rewrite the comultiplication by using tensor products. Thereis alinear embedding
of Fun(G) ® Fun(G) in Fun(G x G) such that

(a®b)(z,y) := a(z)b(y), =,¥€G,
for all a,b € Fun(G). Hence also
(Z a; ® bi) (z,9) = Zai(a:)b,-(y) (finite sum).

(To start with, the tensor products under consideration are algebraic, so they involve only
finite sums.) In particular, if G is an algebraic group over C and if we ta.uke for A the a.lgebra
Pol(G) of all polynomial functions on G, then the above linear embedding becomes a hnez.zr
isomorphism: Pol(G) ® Pol(G) ~ Pol(G x G). By way of example let G be the algebraic

group
SL(2,C):= {(z Z) |zv—yu= 1}.
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Let o be the polynomial function

o::(z y)o——>x:G’-—>C
v

u

Y

and let similarly §,7,8 be the polynomial functions which map Z to y,u, v, respec-

tively. Then Pol(G) consists of all functions on G which can be written as polynomials in
aaﬁ77’6'

As another example let G be a compact group and let A := C(G), the algebra of all
continuous functions on G. Then C(G x G) can be identified with the topological tensor
product of C(G) with C(G), i.e., embed the algebraic tensor product of C(G) with C(G)

in C(G x G) as before and then take the completion with respect to the supremum norm
on G X G.

Thus, in many cases, we can view the comultiplication ® as a unital algebra homo-
morphism ®: 4 — A ® A Here A ® A is an algebra with multiplication such that
(a ®@b)(c®d) =ac® bd, and with unit I @ I.

We can also extend the multiplication in .4, which is initially given as the bilinear mapping
(a,b) — ab: A x A — A, to the linear mapping

mzzait@b; — Zaibi:A®A — A.

Note that, if F € A® A, then
(m(F))(z) = F(z,z).
We will next rewrite the group axioms for G in terms of axioms for ®, e and k:
(i) The associativity (zy)z = z(yz) yields a((2y)2) = a(z(yz)) for functions a on G. Thus
we have the coassociativity axiom
(P®id)o® = (id® 9) 0 &.
(ii) ex = z = ze for € G. Hence a(ez) = a(z) = a(ze). This yields the counit axiom
(e®id)o® =id =(id®e)o d.
(iii) If G is a commutative group then xy = yz for all 2,y € G. Hence a(zy) = a(yz). Define
the linear mapping 0: A ® A — A ® A such that ¢(a ® b) = b ® a (the flip automorphism).
Then we have, for commutative G, the cocommutativity property

cod =&,

(iv) z7'z = e = gz~! for ¢ € G. Hence a(z7'z) = ale) = a(zz™!). We will rewrite
a(z71z) by using @, k and m. Observe that

(2(a))(z,y) = a(zy), hence (((k@id)o @)(a))(z,y) = a(z™y).
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Thus
(mo(x®id)o ®)(a))(z) = (((x ®id) 0 )(a))(z,2) = a(z™z).

We can rewrite a(zz ') in a similar way, while a(e) = e(a)I(z). Thus we have the antipode
axiom

(mo(k®id) o ®)(a) = e(a)l = (mo(id ® k) o )(a).

The group G can often be recovered from Fun(G). As afirst example consider an algebraic
group G and let A := Pol(G), the algebra of polynomial functions on G. Then x: A — Cis
a unital algebra homomorphism if and only if there exists z € G such that x(a) = a(z), and
this establishes a one-to-one correspondence x « x between characters x of A and elements
z of G. If x1(a) = a(z1) and x2(a) = a(zy) then

((a ® x2) 0 2)(a) = a(2122),

50 we can also recover the group multiplication on G from the comultiplication on A.

As a second example let G be a compact group and let A := C(G), the algebra of
continuous functions on G. Then C(G) is a commutative C*-algebra with unit, where the
*-operation is given by pointwise complex conjugation: a*(z) = E(-.TZ_S. The Gelfand theory
for commutative C*-algebras tells us that x: A — C is a unital x-algebra homomorphism if
and only if there exists z € G such that x(a) = a(z).

Since ®: 4 — A ® A is an algebra homomorphism, it is already determined by its action

on a set of generators for the algebra A. For instance, if G := SL(2,C) and A := Pol(G)
then the functions «,,7,6 which send z g to z,y,u,v, respectively, form a set of

generators of A. Let us compute, for instance, ®(a).

(3 2) (2 2)-+( ) (2 2)

1 M 2 V2 10 2 U
=a<<x1xg+y1u2 *))=1'1.’L‘2+yl’lt2

* *
= 1 T2 Y2 1 N T2 2
- n))a(( m)) e (G 0)- (G2 )
_ Ty N T2 Y2
_.(onZ)cH-ﬂ@'y)((u1 vl),(uz v2)).

Similarly we compute the action of ® on f3,7,6. Thus we obtain:

da)=a®a+pf®y, ¥P)=a®@F+LR,

2.1)
(V) =70a+6®y, =700 +604,

and this determines ®(«) for all a € A.
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The above derivation can be done in a more conceptual way if we use the notion of matrix
representation, i.e. a homomorphism

m1(z) ... Tia(%)

nnl.(z) .. 7rnn'(z)

of the group G into the group of invertible complex n X n matrices. Then the matrix
elements 7;; are functions on G. Under further requirements on 7 these functions may be
continuous, C'*, analytic, polynomial, etc. Let us consider how @, e and k act on the my;:
(i) We have 7 (zy) = 7(z)r(y), hence mi;(zy) = 3, Tik(z) ® 7k;j(y). Thus

‘I’(W,‘j) = Z‘lr,'k®7rkj. (22)
k

(ii) We have w(e) = I, hence m;;(e) = &;;. Thus
e(mij) = bij.

(iii) We have 7(z~!)r(z) = n(e) = m(z)m(z~"), hence
domin(e Nm(e) = mile) = 3 mik(z)me (7).
k k
Thus

ZK(Tz’k)ﬂ'kj = 5,‘]‘1 = Zﬂ';k K(?l'kj).
k

k

In the example of SL(2,C), with g := (z g), we have a two-dimensional matrix

representation

o= (56 50

which explains (2.1) in view of (2.2).
2.2. DEFINITION OF HOPF ALGEBRA

The reader may now be sufficiently prepared to digest the general definition of a Hopf
algebra. Let A be a complex linear space. Then A is a Hopf algebra if the following four
properties are satisfied:

(i) A is an associative algebra with unit I, where the multiplication (z,y) — zy is linearly
extended to m: A ® A — A.

(ii) A'is a coassociative coalgebra with comultiplication ®: 4 — A® A and counit e: A — C
(linear mappings) satisfying

(2®id)o®=(1d®%)od and (e@id)od =id=(id®e)o .
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(iii) A is a bialgebra, i.e., A satisfies both (i) and (ii), and the mappings ®: 4 — A® A and
e: A — C are unital algebra homomorphisms.
(iv) There is an antipode k: A — A (linear mapping) satisfying
(mo(k®id)o®)(a)=e(a)l=(mo(id®@k)o®)(a) foralaecA

In general, K ok # id (& is not involutive) and k(ab) # k(a)k(b) (« is not multiplicative).
However, it can be shown that

k(ab) = k(b)k(a), k(I)=1, co(k®K)o®=BoK, eokx=e¢,

so k is an anti-multiplicative unital algebra homomorphism and an anti-comultiplicative
counital coalgebra homomorphism.

2.3. COREPRESENTATIONS OF HOPF ALGEBRAS

Let A be a Hopf algebra. A matrix corepresentation of A is a matrix

U1 cee Ulp
u = with uj; € A
Upl .. Unn
such that
B(uij) = Y uik®ug; and  e(uij) = bij. (2.3)
k=1

If A = Fun(G) for some group G then this definition is equivalent to the definition of matrix
representation of G. It is possible to give a more abstract definition of corepresentation
without use of matrices, for which we refer to the literature.

It follows from the antipode axiom that

n

Zn(uik)ukj = 6;1‘I = Zu,-k K(ukj). (2.4)

k=1 k=1

Two corepresentations v and v of A are called equivalent if u and v are matrices of the
same size n X n and if there is an invertible complex n X n matrix s such that

su=vs  (matrix products).

A corepresentation u of A is called irreducible if u is not equivalent to a corepresentation
v of the form

i.e., if not for some m,1 < m < n— 1, we have v;; = 0 for all (4,7) such that m+1 <1 < m,
1<j<m.
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2.4. NOTES

There are two textbooks on Hopf algebras: Sweedler [42] and Abe [1]. A concise introduction
to Hopf algebras is given in Hazewinkel [15, §37.1]. An informal account of some basic
facts and examples can be found in Bergman [8]. Manin [26] discusses Hopf algebras in
connection with quantum groups. We have introduced notation for Hopf algebra operations
as in Woronowicz [49]. In fact, the notation A for comultiplication, ¢ for counit and S for
antipode is more common, cf. [1], [11]. This last notation will be used in §7 for dual Hopf
algebras, in particular for (quantized) universal enveloping algebras.

3. Quantum Groups

In this section we will introduce our main examples of quantum groups: the quantum
analogues of the groups SL(2,C) and SU(2). We will also give the definition of Hopf
x-algebras and of compact matrix quantum groups.

3.1. GENERATORS AND RELATIONS

Many special Hopf algebras are introduced by means of generators and relations. For
instance, let G := SL(2,C) and A := Pol(G), the algebra of polynomial functions on the
algebraic group G. Then A as unital algebra is isomorphic to the commutative unital algebra
with generators @, 8,7,6 and with relation ad — vy = I. We can equivalently describe this
algebra as the free commutative unital algebra generated by o,(,v,6 divided out by the
(necessarily two-sided) ideal generated by a§ — By — I.

We might also describe A as the unital algebra with a priori non-commuting generators
a,,7,6 and relations

aﬂ—ﬂa:O, Ol')’—’YQ:O, 186_613=07 76_6‘)':03 (31)
By-v8=0, ab-6a=0, aé—-pfy—-I=0. '
So A is the free non-commutative unital algebra with generators a, 8,7, divided out by
the two-sided ideal generated by the left hand sides in (3.1).

Note also that the generators are precisely the matrix elements of the corepresentation

?; ? ) This determines the Hopf algebra structure of A completely.

In general, if a Hopf algebra is presented as algebra by means of generators and relations
then it is sufficient to specify ®, e and k by their action on the generators, as these operations
are multiplicative or anti-multiplicative with respect to the multiplication. If it is already
given that the generators are the matrix elements of a corepresentation then the action of

® and e on the generators follows by (2.3), while x acting on the generators, if it exists, is
uniquely determined by (2.4).

3.2. THE QUANTUM SL(2,C) GROUP

This celebrated quantum group is presented by a deformation of the relations (3.1). We
will use a deformation parameter ¢, which we will fix at some nonzero complex value. For
¢ =1 the Hopf algebra Pol(SL(2, C)) will be recovered.
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Let A, be the unital algebra with non-commuting generators @, 8,7, 8 and with relations

aff = gBa, ay=gqya, Bé=q¢éB, ~6=qby, By=1p,
ab—gfy=ba-q By =1 (3.2)

We define a comultiplication @ and a counit e on 4, by the requirement that (a g) is

a corepresentation of A,. This yields, by (2.3), again (2.1) for ® acting on the generators,
and

e(a)=e(6) =1, e(B)=e(v)=0.
Also, if we put

k(@) =46, K(8)=a, K(B)=-¢"'8, k(y)=-g7, (3.3)

then (2.4) is satisfied in view of the relations (3.2). The only thing left for the proof that .4,
is a Hopf algebra, is to show that the relations (3.2) are preserved by ® and e extended as
homomorphisms and by x extended as anti-homomorphism. See for instance Woronowicz
[50] for a proof that this is indeed the case.

We say that the Hopf algebra A, is associated with the quantum group SL,(2,C). Ob-
serve that A, is a deformation of the commutative Hopf algebra A4; = Pol(§L(2,C)) into
a. non-commutative Hopf algebra. As such, A; is a kind of quantization of A;, which moti-
vates the name quantum group. Observe also that SL(2,C) is rigid within the category of
complex Lie groups, but has a nontrivial deformation within the wider category of quantum
groups.

3.3. HOPF %-ALGEBRAS

We will now pass from complex to real by introducing a *-operation. Recall that a *-algebra
is a complex associative algebra with anti-linear mapping a — a* which is involutive and
anti-multiplicative, i.e. (¢*)* = a and (ab)* = b*a”. If the algebra possesses a unit I (which
we will always assume) then it is also required that I* = I.

A Hopf +-algebra is a Hopf algebra A with a mapping a — a*: A — A such that A
as an algebra becomes a *-algebra, the mappings #: 4 — A ® A and e: 4 — C are *
homomorphisms, and k satisfies

Ko*xokox*=id.

“The two mappings £ and * will not necessarily commute.
A matrix corepresentation u of A is called unitary if

u; = K(uji), (3.4)

which can, in view of (2.4), be equivalently written as

Zu;i ugj =01 = Zu;k Ufg- (3-5)
k k
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If A is presented by generators and relations, then the x-operation is already characterized
by its action on the generators. If the generators are moreover the matrix elements of a
unitary corepresentation of A then (3.4) shows how * acts on them.

There is a one-to-one correspondence between the choice of a real form of a complex
algebraic group G and the choice of a Hopf *-operation on Pol(G). For instance, if A =
Pol(SL(2,C)) then the group

SU(2) := {(z f) [ + |u® = 1}

is a compact real form of SL(2,C). Now define a — a* on A by first restricting the
polynomial ¢ to SU(2), then taking pointwise complex conjugates and finally extending the
resulting function to a holomorphic polynomial on §L(2,C). Thus a* = § and §* = —+.
On the other hand, the real form SU(2) can be recovered from our knowledge of the #-
operation: x:A — C is a unital *-homomorphism if and only if there is € SU(2) such
that x(a) = a(z) for all a € A.

3.4. THE QUANTUM SU(2) GROUP

From now on consider the Hopf algebra .4, with 0 < ¢ < 1. Often, the results will remain
valid for the classical case ¢ = 1, sometimes the case ¢ = 1 has to be interpreted by taking
a suitable limit. Our restriction is mainly for convenience—the assumption that ¢ is real
and nonzero would also be possible.

Let a — a*: A, — A, make A, into a Hopf x-algebra such that (‘; '?) is a unitary

corepresentation. This yields
a® = 57 6" = a, ,3* =-q, ’7* = _q_1ﬂ~

It can be verified that the continuation of * to A, as an anti-linear anti-multiplicative
mapping is well-defined in view of the relations (3.2). Thus A, becomes a Hopf *-algebra,
which we say to be associated with the quantum group SUL(2).

3.5. COMPACT MATRIX QUANTUM GROUPS

Let us bring a little analysis into this algebraic story. Given a Hopf *-algebra A, generated
by the matrix elements of a unitary corepresentation u of A, we want to make A into a
normed *-algebra, by analogy to Pol(SU(2)) with respect to the sup norm.

For a Hilbert space H let £(H) be the algebra of all bounded linear operators on H. It
is a C*-algebra, as we have ||TT*|| = | T||>. By a #-representation 7 of A on H we mean a
homomorphism 7: A — L(H) of unital *-algebras. Define

|la|| := sup ||7(a)]], 7 running over all *-representations of A.
T

Since u is a unitary corepresentation, we have ||7(u;;)|| < 1 for all *-representations = and

for all indices 4, j. Hence, for all a € A, ||a|| will be finite, so || .|| defines a seminorm on A
and

le“all = llal®,  a€A. (3.6)
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If, moreover, a = 0 whenever ||a|| = 0, or if, equivalently, A has a f:;utbful *f-x;:presentatlon,
then ||. || is a norm on A satisfying (3.6). Let A be the norm comp etion of A as a normid
linear space. Then the -algebra operations will also extend to A and A will become a C*
algebra. Moreover, with a suitable definition of C*-tensor product A® A, & also extends
to a C*-homomorphism of A to A® A. . .

We will say that A is the Hopf x-algebra and A is the Hopf C*—algebra. associated with a
compact matrix quantum group. Here the term matrix quantum group 1s used beFause A
is generated by the matrix elements of a corepresentation and the quantum group is called
compact because the *-algebra can be made into a normed *-algebra. e .

By way of example, let G be a compact Lie group. Equj\{alently, G is Esomorphlc to a
closed subgroup of SU(n), so we have a faithful unitary matrix representation Of_ G. Let A
be the Hopf x-algebra of polynomials in the matrix elements of thxs'representatlon. Then
the above construction makes .4 into a normed *-algebra with norm given by the supremum
norm on G. The C*-algebra completion A of A can be identified with the (commutative)
C*-algebra C(G) of continuous functions on G. As we observed in §2.1, the group G can be
recovered from A by considering the #-homomorphisms of A to C. Infact, each commutative
Hopf C*-algebra fits into this example, cf. [49, Theorem 1.5].

With the above norm and C*-algebra construction we have made contact with Woro-
nowicz’ general theory [49] of compact matrix quantum groups. In §4 we will state the
main results of this theory. However, for special quantum groups as 5U(2), it is possible to
derive such results without reference to the general theory, by only using the Hopf *-algebra
structure, cf. Masuda e.a. [28], Vaksman and Soibelman [45].

3.6. IRREDUCIBLE *REPRESENTATIONS OF A,

For a Hopf x-algebra A associated with a compact matrix quantum group there are two
interesting representation theories: the irreducible unitary corepresentations of A on finite
dimensional Hilbert spaces and the irreducible *-representations of A on possibly infinite-
dimensional Hilbert spaces. If A = Pol(G) with G a compact Lie group, then the irreducible
*-representations of A are one-dimensional and correspond to point evaluations on the
elements of G. By analogy, for non-commutative .4, the irreducible *-representations of A
may be considered as the elements of the underlying quantum group.

Let us consider the classification of the irreducible *-representations of A,, cf. [45]. There
is a family of one-dimensional representations x® (0 < 6 < 2x) and a family of infinite-
dimensional representations 7¢ (0 < 6 < 27). The first family is given by

X'(@) =€’ X(@)=e x’(v)=x°(y")=0.
The second family is defined on a Hilbert space H with orthonormal basis vy, vy,...:
TN on =€ pt o, (1) on = e un vy,

9 _ =)y, ifn >0,
(@) on {0 if n=0,

Tﬁ(a*)vn — (1 _ 'u2n+‘2)1/2 Vngi-
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Furthermore, it can be shown that the representation 7 defined by the direct integral

®
T :=/ 74 do
0<oer

is faithful and that |la|| = ||7(a)|| for all a € A. Finally, each *-representation of A, is a
direct integral of irreducible *-representations (so is a type I representation).

3.7. QUANTUM SUBGROUPS

i6
Let K := S(U(1) x U(1)) the subgroup of SU(2) of diagonal matrices eO e?,-g). This
subgroup is isomorphic to U(1). The algebra B := Pol(X') has generators , § (functions
evaluating left upper respectively right lower matrix element) with relations aé = da =T
and *-operation given by a* = §. There is a comultiplication ¥:8 — B @ B given by
¥(a):=a®a, ¥(6):= § ® 6. Now one way of expressing that K is a closed subgroup of
SU(2) is that there is a surjective *-homomorphism F of Pol(§U(2)) onto Pol(X') (namely
the restriction of functions on SU(2) to K'), which is moreover intertwining between the
comultiplications on the two algebras.

In an analogous way we can consider K as a quantum subgroup of the quantum group
SU,(2). The mapping F: A, — B, for which F(a) := a, F(6) := 6, F(B) := F(y) = 0,

defines a surjective *-homomorphism and the following diagram is commutative:

A, 2 A0 A4,

lF lF@F
B L BesB

Note that the one-dimensional *-representation x? applied to a € A, is precisely the point
evaluation of F(a) at diag(e',e~%9).

3.8. NOTES

Several motivations have been given for the particular way of defining the SL(2,C) and
SU(2) quantum groups, cf. Woronowicz [50, Appendix A1] and Manin [26]. A strong reason
for this particular choice is also that the Hopf algebra .4, is contained in the dual Hopf
algebra of Jimbo’s [16] quantized universal Hopf algebra for root system Aj, cf. §7.3. Thus,
in principle, quantum analogues can be constructed of all complex or compact semisimple
Lie groups.

See for instance Nijenhuis and Richardson [30] for rigidity of semisimple Lie algebras.

In [27], [28] and [32] the authors write y,v,u, z instead of our @, 3,7, §, respectively.

Our use of the term Hopf C*-algebras (cf. §3.5) is informal. Different definitions of Hopf
C*-algebras have been given in literature, cf. for instance Vallin [46].

Woronowicz [49] called compact matrix quantum groups originally compact matrix pseu-
dogroups. He does not use Hopf algebras, but he starts with a pair (A, u) of a C*-algebra A
with comultiplication and a corepresentation u, such that the matrix elements of u generate
a dense #-subalgebra A of A and an antipode exists on A. Our construction of the Hopf
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C*-algebra A from the Hopf *-algebra A in §3.5 yields less general A than considered in

[49]. For instance, in our approach the counit on A always extends to A, while this is not
necessarily the case in [49].

Our definition of Hopf *-algebra in §3.3 was highly suggested by [49]. The same definition
occurs in [44] and a quite similar definition in [26].

In [50] an explicit realization is given of the faithful representation 7 of §3.6. The operators
°(y7*), m%(e) and 78(a*) of §3.6 form a g-analogue of the Schrédinger representation
of the Heisenberg algebra and were studied already by Arik and Coon [3] and Feinsilver
[13], long before quantum groups were introduced. These authors also considered a g-Fock

representation. In this connection it is possible to give interpretations of g-analogues of
Hermite polynomials.

4. Representation Theory of Compact Matrix Quantum Groups

Let A and A be a Hopf *-algebra, respectively Hopf C*-algebra associated with a compact
matrix quantum group. In this section we summarize the powerful results of Woronowicz [49]

on the representation theory of compact matrix quantum groups, i.e. the corepresentation
theory of A and A.

4.1. HAAR FUNCTIONAL

The key to harmonic analysis, both on compact groups and on compact matrix quantum
groups, is the Haar functional. Recall that, on a compact group G, we have a unique measure
dz, the Haar measure, and corresponding functional h on C(G), the Haar functional

h(a) ::/Ga(z)da:, acC(@),

with the following properties:

@) fG dr=1.

(i) [ga(z)dz > 0if a € C(G) is nonnegative.

(iii) [ga(zy)dz = [ga(z)de = [ga(yz)dzif a € C(G),y €G-

THEOREM 4.1 (Woronowicz [49]). Let A be a Hopf C*-algebra. Then there is a unique
linear functional h on A such that:

i) h(H)=1
(ii) h(a*a) > 0forall a € A.
(iii) (h ®id)(®(a)) = h(a)] = (id ® h)(®(a)) for all a € A.

Moreover, if a € A and h(a*a) = 0 then a = 0.
Let us give h explicitly on A,. For this we use a certain basis of Ag:

PROPOSITION 4.2 (Woronowicz [50]). The elements a* 4™ (v (k,m,n > 0) and
()™ (y*)* (k > 0, m,n > 0) form a basis of A,.
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Now we have (cf. Woronowicz [49, Appendix A.1]):
ha* 4™ (v )") = 0= h((a")*y™ (7*)") ik >0or m # n,

*\ 7 1—q2
h((77™) )=m‘

Hence, for a polynomial p we have
00 1
Moy ) = (1= ) Yr(e) o = [ pla)des, (41)
k=0

where we used the notation for g-integrals (cf. [37]). However, quite surprisingly, it is also
shown in [50, Appendix A.1] that

Moa(a+ o)== [ o) VI eide, (42)

an ordinary integral.
The polynomials in y7* respectively (a + a*)/2 are the U(1)-biinvariant respectively
cocentral elements of A,. Here a is called U(1)-biinvariant if

(X’ ®1d)(®(a) = a = (1A ® x*)(®(a)) for all 6,
and a is called cocentral if ¢ 0 ®(a) = ®(a).
4.2. SCHUR TYPE ORTHOGONALITY RELATIONS
Let G be a compact Lie group. Choose for each equivalence class of irreducible unitary

representations of G a matrix representation (1%,,)m n=1,.. 4, as representative. Then the
well-known Schur orthogonality relations state that

/ tgnk(z) t;,(z)dm = d;l 60'1' 6mn 61:1- (4.3)
G

o

If, moreover, G is a closed subgroup of some U(n) and if A is the *-algebra generated by
the matrix elements of the natural representation of G then all ¢7,,, are contained in A and
they form a basis of A.

Woronowicz [49] obtained the quantum group analogue of (4.3). In order to formulate
this, let A be a Hopf *-algebra associated with a compact matrix quantum group and choose
for each equivalence class of irreducible unitary corepresentations of .4 a representative

(tgnn )m,n::l RO

THEOREM 4.3. There exists a unique unital multiplicative linear functional f on A such
that

(8 (15)7) = Seclmn J05)

TSR
607' mn_a_T
=1 "1l

Furthermore, the t7, . form a basis of A. Any finite-dimensional matrix corepresentation of
A is equivalent to a direct sum of irreducible corepresentations of .A.
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The occurrence of f in this quantum Schur theorem is 2 new phenomenon, by which ma-
trix elements belonging to the same representation are no longer orthogonal in a straightfor-
ward way. This phenomenon is related to the fact that the Haar functional is not necessarily
central, i.e. h(ab) # h(ba) in general.

For A, the unital multiplicative linear functional f was computed in [49, Appendix A.1].
The result is:

flay=q7% f@)=q, f(B)=f(n)=0. (4-4)

5. Little g-Jacobi Polynomials Interpreted on SU,(2)

Given an explicit compact matrix quantum group like SU,(2) one may try to realize the
following program:

(i)-Classify the irreducible unitary corepresentations t7.

(i) Choose suitable bases of the corepresentation spaces, by which one obtains matrix
corepresentations (t7,,).

(iii) Compute the t7,, as polynomials in the generators or other suitable primitives.

(iv) Recognize these polynomials as special functions and rewrite the Schur type orthogo-
nality relations as orthogonality relations for these special functions.

We will discuss this program here for the case SUy(2). Let us first recall the classical case
of SU(2), f. for instance Vilenkin [47, Ch. 3] or Stanton’s tutorial [41].

5.1. IRREDUCIBLE UNITARY REPRESENTATIONS OF SU(2)

Letl € -;—Z+. Consider the (2! +1)-dimensional space of homogeneous polynomials of degree
2l in two complex variables, with inner product such that the polynomials

! 2\ .
en(é,n):=(1_n) S A I AR NS T

form an orthonormal basis. Define a representation t' of SU(2) on this vector space by
(t' (2 z> f) (&m) == f(=€ + un, y€ + vn).

If ¢t has matrix elements t. , with respect to the basis vectors e, then it follows that

2l \!/? . it
() o= +om e
1 1/2
= E tinn ((z g)) (1 flm> fl—m nl+m.
m=—I

The basis is such that the matrix (t),,(g)) becomes diagonal when g is in the diagonal
subgroup U(1):

6 .
(5 )=
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We know that the representations ¢ = (t.,,) are unitary and irreducible and that each

irreducible unitary representation of SU(2) is equivalent to a t!. Furthermore, the t!. ., are
expressible in terms of Jacobi polynomials, and the Schur orthogonality relations

——— 6 1
l " — 1,
[ bunl) e do =
are equivalent to orthogonality relations for Jacobi polynomials.
5.2. IRREDUCIBLE UNITARY COREPRESENTATIONS OF A,
These can be classified by various methods, cf. Woronowicz [50], Vaksman and Soibelman

[45], Masuda e.a. [27], 28], and the author [21]. Here we follow the approach of [21].
Fix 0 < ¢ < 1. Let

We will use the following lemma, which follows easily by complete induction:

LEMMA 5.1. Let zy = gyz. Then
n . n n~k k - n k,n—k
(z+y) =Z[k] R =Z[k] gk ynk, (5.1)
k=0 q =0 g~!

Let I,n € $Z4. By definition of & acting on A, we have

9] 1/2
d l-n _I+n
([1 - n] o2 c

91 1/2
=[1_n} (@@a+BRY) " (YRa+6®y)T"
~2

q

(5.2)

Now expand the right hand side of (5.2) by use of (5.1) and (3.2), such that we get monomials

a'=™ 4™ in the tensor factors on the right. Then
2l e I-n I+n
I_nl (@@e+B@Y)T(v@a+887)
q-2
! o 112 (5.3)
=D tn® [1 } ol T,
m=-1 -m qu
where the sum runs over m = —I,~I + 1,...,1 and the ¢!, are certain elements of A,.

Application of the coassociativity and counit axioms to the left hand side of (5.2) and the
right hand side of (5.3) shows that ¢! = (¢! ) is a matrix corepresentation of A,. One also
sees that (t.,,) becomes diagonal with respect to the quantum subgroup U(l):

Xe(tflm) = 6‘2“18 6TLTN.'
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Formula (5.3) can be considered as a generating function for the matrix elements ¢},

From (5.3) another generating function can be derived which sums both over m and =.
. 2091/2 . .
The coefficients [,_n] g2 in (5.2), (5.3) were inserted, because it will turn out that they

make the corepresentations unitary. They also make the matrix elements more symmetric,
as we will state now. Let a(a, 8,7, 8) be some algebraic expression in the generators a, 8,7,
of A,, which yields an element of A,. Let d(e,f,7,6) be the expression obtained by

reversing the order of the factors in all terms of a(e,f,7,6). Now it follows from the
relations (3.2) that the mapping

a(e,B,7,6) — a(a,v,8,6)
is an algebra isomorphism of .4,, while the mapping
a(aﬁﬁ7776) — 6(5’ﬁ777a)

is an algebra anti-isomorphism of A,. Write thm(a,8,7,8) in order to emphasize that t!, , is
some algebraic expression in @, 3,7, §. It turns out, just by inspecting (5.3) and the double
sum generating function, that the t., satisfy the following symmetries:

thin (@, 8,7,6) = thn(a,7,8,6) (5.4)
= (th ) (6,7, 8,0) (5.5)
= (L =) (68,7, ). (5.6)

THEOREM 5.2. The corepresentations t' are unitary and irreducible. Moreover, each
irreducible unitary matrix corepresentation of A, is equivalent to some tl.

Here the unitariness follows from (5.4), the irreducibility from reduction to the quantum

subgroup U(1) and the nonvanishing of the t!,, the completeness by observing from a

somewhat more explicit expression for the ¢!, that these elements form a basis of A,.
5.3. LITTLE ¢-JACOBI POLYNOMIALS

Recall (cf. [2]) that little g-Jacobi polynomials are defined by

—n’ n+1ab
pr(z;a,b59) == 21 (q Zq ;q,qz) (5.7)

and that they satisfy orthogonality relations

(2°*Y50)o0 (P15 @)oo o () g0 (8% Do
(1-9) (90 (¢°P*25¢) o /o Pu(2)Pm(2) (@°112;9)00 *

@) (1= ¢ (P 0)n (439)n
- (1 _ q2n+a+[3+1)(qa+l;q)n(qa+ﬁ+1;q)n nmy

a,f > -1 (5.8)

We call the special polynomials p,(z;1,1;q) little ¢-Legendre polynomials. Now we obtain
from (5.3), by straightforward but somewhat tedious computations:
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THEOREM 5.3. We have

thn = Chm (@)™ pion (177 2™, P Py (5.9)

where n > m > —n and

l—m 1/2 l+n 1/2 o .
o ;=[ ] [ ] g-(n=m)t=n) (5.10)

n-—m n-—m
q? q?

This theorem was successively but independently proved by Vaksman and Soibelman [45],
Masuda e.a. [27], [28], and the author [21]. Expressions for t!,, in case of the other three
possibilities for n and m follow from (5.9) and the symmetries (5.4)-(5.6). In particular,

for I € Z; we have

tho = P(17751,1;¢%), (5.11)

a little g-Legendre polynomial of argument yvy*.
The Schur type orthogonality (cf. Theorem 4.3 and formula (4.4)) yields

q2(l—n) (1 _ q2)

ko\x 4l —
h((tpr) tnm) = bk 61’” brm 1— q2(21+1)

(5.12)

By substitution of (5.9) and (4.1) this is seen to be equivalent to the orthogonality relations
(5.8) for little g-Jacobi polynomials.

It is also possible to identify the matrix elements as special orthogonal polynomials, when
we use (5.12) and have some a priori information about the algebraic structure of the matrix
elements. For instance, if we already know that, for | € Z, t}, is a polynomial p; of degree
lin «y* then we obtain from (5.12), for k # [:

1
0 = h(thy)"thy) = /0 pi(x) pi(z) dpot,

from which we conclude that p,(z) = const. py(z;1,1; ¢%).

54. NOTES

Lemma 5.1 is a folk lemma which was often reproved in the literature. In a different
formulation it seems to be present already in the works of Netto and MacMahon. It can
also be found in Schiitzenberger [39], Cigler [10] and Feinsilver [12].

In [45], [27] and [28] the second order g-difference eigenvalue equation for the little ¢-
Jacobi polynomials was obtained from the interpretation on SU,(2) by use of the Casimir
element in the dual Hopf algebra to A,.

6. Summary of Further Interpretations on Quantum Groups

In this section we briefly indicate some other classes of g-hypergeometric orthogonal poly-
nomials and functions which have an interpretation on quantum groups.
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6.1. ¢-MEIXNER-KRAWTCHOUK POLYNOMIALS

For fixed g € SU(2) the representation matrix (t!,,(¢)) dicussed in §5.1 is unitary. It is
possible to express these matrix elements in terms of Krawtchouk polynomials, such that the
orthogonality relations between the rows or columns of the unitary matrix are equivalent to
the orthogonality relations for the Krawtchouk polynomials, cf. [31, §12.7] and [20, §2]. In
a similar way (cf. Koornwinder [21]) we can rewrite the orthogonality relations (3.5) for the

unitary matrix corepresentation (t!,,) of A, as orthogonality relations for the g-Meixner-
Krawtchouk polynomials

Kn(g~%b,N5q) :=261(¢7", 0% ¢ V59,06,  n,2=0,1,...,N,

(an ad hoc notation). Before [21] these polynomials had not been recognized in literature
as a separate family of orthogonal polynomials. They are g-analogues of Krawtchouk poly-
nomials which can be obtained from the ¢g-Meixner polynomials by specializing a parameter
such that the support of the orthogonality measure becomes finite. Note that the orthog-
onality relations (3.5) are identities in A;. These can be made into scalar identities by
first rewriting them as operator identities by means of the representations 7° of §3.6, and
next taking matrix elements of these operators with respect to the basis vectors v, of the
representation space.

6.2. ¢-HAIN and ¢-RACAH POLYNOMIALS

Clebsch-Gordan coefficients obtained by decomposing the tensor product of two irreducible
representations of SU(2) as a direct sum of irreducible representations, can be expressed
in terms of Hahn polynomials (cf. for instance [19]). Racah coefficients, which give the
transformation between two canonical ways of decomposing a threefold tensor product of
irreducible representations of SU(2) as a direct sum of irreducible representations, can be
expressed in terms of Racah polynomials (cf. [48]). There are analogous results for SU,(2).

Define the tensor product of two matrix corepresentations (u;;) and (v;;) of 2 Hopf algebra

A as the matrix corepresentation (wjx ji), where wi ji := u;jvr. Then, for the tensor
product of matrix corepresentations (t,,,) of A, we have the direct sum decomposition
th @t = & tl. (6.1)

I=l+12, 1 4+l=1,... [l1=12]

Clebsch-Gordan coefficients for this decomposition were considered by Kirillov and Reshe-
tikhin [17], Vaksman [43] and Koelink and Koornwinder [18]. Here we sketch the approach
of [18]. Counsider the linear subspace of A, with basis vectors

ali—myhtngla—neglatnz n;=~l,~L+1,...,0L i=12.

There is a natural realization of the corepresentation ¢ ®t'2 on this space. Another basis of
this space is given by the matrix elements tic,lz-ln where l =L+ b, L+ —1,...,]l1 -,
n = —I,—1+1,...,1, and the direct summands in (6.1) have a natural realization on vectors
in this second basis. The matrix elements of the transformation matrix from the first to
the second basis are called Clebsch-Gordan coefficients. It was shown in [18] that they can
be expressed in terms of g-Hahn polynomials.

Racah coefficients associated with decompositions of threefold tensor products of corep-
resentations ¢ of A, were studied by Kirillov and Reshetikhin [17]. They expressed them
in terms of ¢-Racah polynomials.
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6.3. ADDITION FORMULA AND WALL POLYNOMIALS

Let I € Z,, g,h € SU(2), t' asin §5.1. Then

!
tho(gh) = Y thi(g) tho(h)-

k=-1

By expressing g and h in a suitable way in terms of coordinates on the group, we get the
addition formula for Legendre polynomials from this identity, cf. for instance [47, Ch. 3].

Something analogous for SU,(2) was done in Koornwinder [22]. For the corepresentation
t! of A, we have

!
B(to) = Y, 1ok ® tho-
k=-1
If we substitute (5.9), (5.10) and, in particular (5.11), then we get an identity in A, ® A,
which can be considered as an expansion of the little g-Legendre polynomial of degree | and
of argument ®(yy*), quite analogous to the addition formula for Legendre polynomials.
The passage to a scalar identity is along similar lines as in §6.1. However, now we have
to take matrix elements of operators on H ® H, where H is the representation space of
the representation 7% of §3.6. These matrix elements are taken on one side with respect to
the standard basis, but on the other side with respect to a basis defined by means of Wall
polynomials

Pa(2;0,0;¢) := 201(¢7 ", 0;aq; ¢, qx),

(specialization of little g-Jacobi polynomials (5.7)). The resulting addition formula for little
g-Jacobi polynomials, cf. [22, Theorem 4.1], expands a left hand side

2i(q%;1,1; ¢)py (475 47, 0; ¢),

considered as a function of ¢*, in terms of Wall polynomials p,4x(¢%;¢%,0;9). A typical
term in the expansion equals

const. p—k(q""Y; 0¥, ¢%; @) pi—k(q¥; 45, 055 0) py+k (75 47, 05 ).

Subsequently, Rahman [36] has given an analytic proof of this addition formula, while
van Assche and Koornwinder 7] have shown that the formula tends to the addition formula
for Legendre polynomials as ¢ tends to 1.

In yet unpublished work the author has given a conceptual interpretation of the occur-
rence of Wall polynomials in the addition formula. It turns out that Wall polynomials occur
as Clebsch-Gordan coefficients in the direct integral decomposition for 6@ 2.

6.4. SPHERICAL FUNCTIONS FOR SU,(n + 1)/SU,(n)

Recently, Noumi, Yamada and Mimachi [34] announced an interpretation of little ¢g-Jacobi
polynomials p(2; g% "1, ¢*('=™); ¢?) as matrix elements of irreducible corepresentations of
the quantum group SU,(n +1) which are biinvariant with respect to the quantum subgroup
SUy(n). This result strengthens the expectation that, parallel to the theory of spherical
functions on compact symmetric (or other homogeneous) spaces, a similar theory can be
developed for quantum groups.
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6.5. QUANTUM 2-SPHERES AND BIG ¢-JACOBI POLYNOMIALS

Let A be a Hopf algebra and B be an associative algebra. By a coaction of A on B we mean
a unital algebra homomorphism ¥: A — A® B such that (i) (¢ ®id)o¥ = (id® ¥)o ¥ and
(ii) (e ®id) o ¥) = id. The guiding example is the case that G is a group acting on a space
X, A= Fun(G), B = Fun(X) and (¥(b))(g,z) := b(g.z). If A is a Hopf *-algebra and B a
-algebra we define a -coaction as a coaction ¥ which is also a *-homomorphism. One can
think about A as the dual of a quantum group G and about B as the dual of a quantum
space X. Then one has a quantum action of G on X. A coaction of .4 on B defines a
(usually infinite-dimensional) corepresentation of .4 on B. One can try to decompose this
into irreducible subspaces.

For the case SU,(2) Podles [35] has defined quantum actions on so called quantum
spheres. Next, Noumi and Mimachi [32] have given explicit orthogonal bases for the ir-
reducible subspaces of the algebras corresponding to these quantum spheres. These bases
are chosen such that the action of the quantum subgroup U(1) is diagonalized. They obtain
big g-Jacobi polynomials P,ga'ﬁ)(x;c,d; q) and also, for certain quantum spheres, ¢-Hahn
polynomials Q. (z;¢%,¢", N;q), in both cases with @ = 8 and g replaced by ¢*. Next, in
[33], Noumi and Mimachi also find a realization for the nonsymmetric case a # (3, this time
on quantum 3-spheres.

6.6. QUANTUM GROUP OF PLANE MOTIONS AND ¢-BESSEL FUNCTIONS

Vaksman and Korogodsky [44] studied the quantum analogue of the group of Euclidean
motions of the plane. This work is extremely interesting, since it is the first example of
harmonic analysis on a quantum analogue of a noncompact Lie group. Just as the irreducible
unitary representations of the group of plane motions have matrix elements expressible in
terms of Bessel functions (cf. for instance [47]), so the matrix elements in the quantum
case are expressible in terms of ¢-Bessel functions given as 1¢; ¢-hypergeometric series, i.e.,
different from the more common notion (cf. [14]) of ¢-Bessel functions as ¢¢; functions.

6.7. QUANTUM SU(1,1) GROUP

In [29] Masuda e.a. studied the quantum group SU,(1,1), the quantum analogue of the non-
compact semisimple Lie group SU(1,1). The authors obtained series of infinite-dimensional
unitary representations of this quantum group. They computed matrix elements of these
representations in terms of 3¢, ¢-hypergeometric functions.

6.8. ¢-EXPONENTIAL FUNCTION

If zy = qyz then e,(z + y) = eq(y)eq(z), where e,(z) is the g-exponential function
S heoz¥/(g;q)k- This result, due to Schiitzenberger [39], follows easily from Lemma 5.1.
In yet unpublished work the author has shown that the functions z + eg(cx) occur as
one-dimensional representations of a quantum group version of the additive group R of real
numbers. For the construction of this quantum group one needs a slight generalization of
the definition of Hopf algebra .A. The usual definition of multiplication on A ® A can be
viewed as the mapping (m ® m)o (id ® o ® id) from AQ AR A® A to A® A. Here 0is
the flip automorphism. In our generalization we change the definition of this flip.
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Let A be the free unital algebra generated by one indeterminate . Fix g # 0. Define

o(aF ® o) == ¢ ol @ oF.

Then multiplication on A ® A satisfies
(¢* ® a!)(@™ ® a™) = g2™ aF+m Qitn .

We can extend the comultiplication, defined on the generator by
P(a):=aQI+1Q a,

to an algebra homomorphism ®: 4 — A ® A by putting
®(a™) = zn: [Z] "k @ ok,

k=0 -"4¢?

Now ®(a) = a®a if a = ep(ca).

7. Continuous ¢-Legendre Polynomials

In the sections 5 and 6 we listed an impressive collection of ¢-hypergeometric orthogonal
polynomials admitting an interpretation on the quantum group SU,(2). What we were still
badly missing there, are the Askey-Wilson polynomials [6] themselves, i.e., polynomials

Pa(cosb;a,b,c,d| q) :=a"" (ad; 9)n (ac; g)n (ad; @)n X
-n ,n—1 bed 6 —16 7]_)
Xy (T 00 R T gq), (
ab, ac,ad

which are, for ¢,a,b,c,d € (-1,1), orthogonal polynomials on (—1,1) with respect to a
continuous weight function. There is one case where Askey-Wilson polynomials already
occurred in connection with SU,(2): we have the character formula

! *
tr(tl) = Z t:.m = Uy (a-1-2a ) )

n=-—|

cf. [49, Appendix Al]. Note that the right hand side is independent of ¢q. Here the U, are
the Chebyshev polynomials of the second kind

sin(n +1)6

Un(cosf) := ey

These are usually considered as special Jacobi polynomials, but, as pointed out in [6, p.17],
they can also be written as special Askey-Wilson polynomials:

pr(cosb;q,—q,4*/%,—q/? | q)
Un(cosb) = .
(cosf) (g"*%q)n
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Note that the left hand side is independent of ¢, although the right hand side would suggest
the contrary.

It will turn out that certain Askey-Wilson polynomials can be interpreted as spherical
matrix elements of corepresentations t, where the notion spherical has to be specified. I
obtained this interpretation first for the continuous g-Legendre polynomials, for which we
use here the ad hoc notation

p(cos 8312, ~¢' 2, ¢/, ~q' /% | )
pn((@/2 4+ q71/2)[2;¢1/2,~q1 12,12 —¢* 2 | g)
-n n+l 1/261'9, 1/2e—i9
=4¢3 (q 44 e ;q’Q)-

P, (cos 8| q) =

q9,—4,—9q

By [6, (4.20) and (4.2)] these polynomials are equal, up to a constant factor, to special
continuous g-ultraspherical polynomials C,(cos8;¢ | g2). They are also Macdonald’s ([24],
[25]) orthogonal polynomials Py with parameters ¢, ¢ and associated with root system A,
ift=qt.

I obtained the key for the interpretation on SU,(2) from the formula giving the explicit
expansion of Pr(cosf | ¢) as a finite Fourier series:

n . g2 g2
Pn cos — on/2 (Q7q )k (Q1q )ﬂ-—k ei(n-’zk)a, 7.9
(sl = ,; (4% ¢°)k (4% 9%)n—k 2

cf. [4, (3.1)]. The ¢ = 1 analogue and limit case of this formula is the following finite Fourier
series for Legendre polynomials:
n

e = S o g

It turned out that the group theoretic interpretation of (7.3) could be imitated in order to
obtain a quantum group theoretic interpretation of (7.2).

7.1. THE FOURIER SERIES FOR LEGENDRE POLYNOMIALS INTERPRETED

i
Put ay := (eO ef)w)' Recall that, in §5.1, we considered the representation (ti,,) of
SU(2) with respect to an orthonormal basis e}, (n = —I,~1+ 1,...,1) of eigenvectors for

the t!(a):
—2in8 |
t'(ag) el = e7mlel.
In particular, for l € Z,.:

t'(ag)ep = g,

and e} is, up to a constant factor, the unique U(1)-fixed vector in the representation space
of t'. Now consider the subgroup K := SO(2) of SU(2). As U(1) and SO(2) are conjugate
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subgroups of SU(2), there must be a A-fixed unit vector el in the representation space of
t! (I € Z,). Expand this vector in terms of the original basis:

{
e’K = Z Cil e%, (7.4)
n=-1

where the ¢/, are yet unknown.

z

Put g := __ﬂ). The function g — Py(zZ) = th(g) is U(1)-biinvariant. By conju-

z
gacy the function

l
g P(3(a* + 2+’ +) = (H(9)ek,ek) = D chchutmalo)
n,m=-—1
is SO(2)-biinvariant. For g := ag this yields:
l -
Pi(cos26) = Z |t |2 e=2ine, (7.5)
n=-—1

So the expansion coefficients in (7.3) follow from the ¢} as defined by (7.4). We will find
explicit expressions for the ¢!, by passing to the corresponding Lie algebra representation.

7.2. AN INFINITESIMAL APPROACH

The Lie algebra g := sl(2, C) of the Lie group SL(2, C) consists of all complex 2 x 2 matrices
of trace 0. It is the complexification of the Lie algebra of SU(2). A basis for g is given by

{1 0 _ {0 1 _ {0 0
H..‘<0 _1), B._(O O), c._(l 0),
with commutator relations
[H,B]=2B, [H,C]=-2C, [B,C]=H. (7.6)

The representation t' of g corresponding to the representation t' of SU(2) is defined by

d
hxy =
t( )‘_dt

t!(exp tX)
t=0

for X in the Lie algebra of SU(2) and extended to g by complexification. The explicit
expression for t! acting on the basis of g is:

t'(H)el, = —2nel,

tz(B)eL={0,/(1_n+1)('1‘+'n)e£,_1 ifn=—l+1,-1+2,...,1

ifn=-1,

(7.7)
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(oyel = VI=n)I+n+1)e , ifn=—1 -1 - .
t(C)en {0 ) +1 ;f:::l., +1,,l L, (1.8)

The SO(2)-invariance of the vector ey (cf. (7.4)) can be infinitesimally characterized as

t'(B-C)él =0. (7.9)

When we substitute (7.4), (7.7) and (7.8) in this formula then we obtain a two-term recur-
rence relation for the cﬁl. Up to a constant factor this can be solved by

(1/2)1=nyr2(1/2) (1452 3
ch = { ( (@=m) /2 ((IFr) 2! ) » I = n even, (7.10)
0, l-nodd,

where | € Z . In view of (7.5) this yields (7.3) up to a constant factor.

7.3. QUANTIZED UNIVERSAL ENVELOPING ALGEBRA

There is no quantum subgroup of SU,(2) analogous to the subgroup SO(2) of SU(2).

However, there is a quantum analogue of the infinitesimal generator B — C of $O(2). For

this we need Jimbo’s [16] quantization of the universal enveloping algebra of the Lie algebra
sl(2,C).

Let U, be a Hopf algebra with unit 1, generated as algebra by elements 4, B,C, D with
relations

AD=DA=1, AB=qBA, AC=q7'CA,
2 _ P2 7.11
be-cp=tD @)

We can recover (7.6) from (7.11) by substituting in (7.11)

A= 3@ DH - p.o em3le-DH

and by letting q tend to 1. We denote the comultiplication by A:U; — U, @ U,. Its action
on the generators is given by

A(A)=A®A, AD)=D®D,
A(BY=A®B+B@D,
A(C)=AQC+C®D.

The counit, denoted by e:U; — C, is given by
e(A)=¢(D)=1, eB)=¢C)=0.
The antipode S:U, — U, is such that

S(A)=D, S(D)=4, $(B)=-¢'B, S§(C)=-4C.
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It can be easily shown that A, ¢ and S have well-defined extensions to 2/, as Hopf algebra
operations.

We can think about %, as a dual Hopf algebra to Ay, i.e., U, is embedded in the linear
dual of A, such that the following rules have to be satisfied for XY el a,be A

(XY)(a) = (X ®Y)(®(a)), (A(X))(a®b)= X(ab),

e(X)=X(I), e(a)=a(l), (85(X))(a)=X(s(a))- (7.12)

In view of the first two rules, it is sufficient to specify X(a) if X is a generator A, B,C or
D and a is a generator «, 8,7 or §. This we declare to yield 0 except in the following cases:

Al@) =g}, A(6)=q¢%, D(a)=q% D(b) =g,
B(B)=1, C(y)=1
It can be shown (cf. Vaksman and Soibelman [45]) that (7.12) and (7.13) yield a well-defined

nondegenerate bilinear pairing (X, a) := X(a) between U, and A,
The following observation will be important:

(7.13)

AX)=A®X+X®D if X=B,Cor A-D. (7.14)
7.4. CONTINUOUS ¢-LEGENDRE POLYNOMIALS INTERPRETED

A corepresentation t' of A, yields a representation of /{; by the rule

tam(X) = X (tnn)-
Indeed, we find that

thm(XY) = Z tk(X) thm (Y)-
k=—1
1

Let the vectors e,,, n = —I,—l+1,...,1, form the standard basis of the representation space
of t', so

t'(X)é€, Z th o (X) el

n=-1
Then the action of ' for the generators of U, becomes

t(A)en = ¢ "en, t(D)en=q"¢

€ns
—l4n-1 _ ql—n+l)§ (q-l—n _ l+n)i~
¢l —¢ n-1» (7.15)
(q-l+n _ ql—n)i- (q-—l—-n-—l ql+n+1)§
a'-q

#(Byel, =

t'(C)el =

n+1 I
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where, as in (7.8) and (7.11) we suppose ¢',_; and e}, ; to be zero.

In the case of SU(2) we found the SO(2)-invariant vector (7.4) by solving (7.9), which
yielded coefficients ¢, given by (7.10). We imitate this in the quantum case and look for a
solution vector v := 3 __ bh el of

t'(¢*B - ¢~ *C)v =0,

where the exponent X is yet to be specified. In view of (7.15) this yields a two-term
recurrence relation for the coefficients b;*, which has only the zero solution if [ € § + Z
and which gives in the case [ € Z:

!
v = const. E g el el (7.16)
n=-—|
l—n even

where, forl € Z; and n = -1, -1+ 2,...,],

1
L ((q2;q4)(l-n)/z (g% 4" )4n) /2 ) 2
" (%5 9")1=n)/2 (6% €* ) 14n) 12

Now compare with (7.2). We recognize the expansion coefficients in (7.2) as squares of
coefficients ¢!, in (7.17):

(1.17)

!
Pleosf | ) =q" 3 (ch)Pe™. (7.18)
n=-~|
l—n even

This is the crucial observation opening the road to quantum group interpretations of Askey-
Wilson polynonomials.
A function a € Pol(SU(2)) is right invariant under SO(2) iff

7 a(zexp(t(B - C))) =0, z € SU(2), (7.19)
t=0
and left invariant under SO(2) iff
5 a(exp(t(B - C))z) =0, z € SU(2). (7.20)
t=0
We propose as quantum analogues of the conditions (7.19) and (7.20):
(id® ("B ~¢7'C))(%(a)) =0, (7.21)
respectively
((¢*B - ¢~*C)®id)(®(a)) = 0. (7.22)

Here ) is a constant which has yet to be specified. We might say that (7.21) respectively
(7.22) express the right respectively left invariance of @ € A, under the virtual quantum
subgroup SO(2).

If X € U, then A(X) will be a finite sum of elements of the form Y @ Z, where Y, Z €U,.
We express this formally as

AX) =) Xa)® X(2)- (7.23)
(X)
Then it can easily be shown that:
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LEMMA 7.1. If A(X) is given by (7.23) and @,b € A, then

(1d ® X)(B(ab)) = 3 (1d & X(1))(®(a)) (id & X(2))(2(5),
(X)

(X ®id)(2(ab)) = 3 (X0 ®id)(®(a)) (X2) ©id)(&(b))-
(X)

Now it follows from (7.14) that:

PROPOSITION 7.2. The elements @ satisfying (7.21) respectively (7.22) form a unital
subalgebra of A,.

It is not difficult to show from (7.16) that the elements a € Span{t!,.} which satisfy
both (7.21) and (7.22), are just the null element if [ € § + Z4, and form for | € Z4 a
one-dimensional subspace of elements

!
a = const. Z g el el el (7.24)

nm=-—1
l—n,l—m even

where ¢!, is given by (7.17). Let us compute (7.24) explicitly for / = 1. From Theorem 5.3
we get

t%,l = (), t%,z =, t},—l =77, tl_l,l =g (v") .

Thus the element a € Span{t},,} satisfying both (7.21) and (7.22) equals, up to a constant
factor,

a= (22 +(a*)2 + q2A72 + q2—2>\(7m)2.

Now we would like to have this element a self-adjoint, i.e., @ = a*. This forces us to take
Re A = }. From the point of view of interpretations of special functions, the choice A := }
will be sufficient for our purposes. For the moment we call an element a € A, spherical if
a satisfies (7.21) and (7.22) with A = §. Put

o= %(02_'_(&*)2 +q,Y2 +q(7*)2) - P*-

Then p spans the spherical elements in Span{t%..}. All a := p(p), with p a polynomial, are
also spherical. Actually we can prove:

THEOREM 7.3. a € A, is spherical if and only if a is of the form p(p), with p a polynomial.
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In particular, we can apply this theorem to the spherical elements given by (7.24). Then
!

Yo dT et = bept (7.25)
k

n,m=-—1l
l=n,l—m even

for certain coefficients by. Now apply the characters x® to both sides of (7.25). This yields

1
> (ch) et = > by (cos 26)*.
k

n=-—l1
l—n even

In view of (7.18) we have

g7 Pi(cos26 | ¢*) =) by (cos 20)*.
k
Hence
T Pp | dP) = bept. (7.26)
k
So we obtain:

THEOREM 7.4. Let ! € Zy. Then, up to a constant factor, the spherical element in
Span{t!,,} is given by P(p | ¢%), a continuous ¢-Legendre polynomial of degree ! in p.

We compare next the known orthogonality relations

; 2
(g%, ¢*;*)oo /" 2 2y | (€% ¢*)oo
—_r Pr(cosf | ¢°) Py(cos b —~ 1 .| df
27 () Jo ( | 4°) Pi( 1) (2€7%; ¢ oo (7.27)
.‘_i_ 5
EEPEIEY kl

of the continuous g-Legendre polynomials with the Schur type orthogonality relations. From
(7.25), (7.26) we obtain

l
Plpld)=qd ) Tt (7.28)

n,m=-—l
l—n,l—m even

Now substitute (7.28) twice into (7.27) and apply (5.12). This yields

!
1- q2)q2l -n 2
R(Pe(p | ) Pi(p | ¢%)) = bk f_—qz(mﬁ ( > g (651)2)
l-—nrre_ven
1-¢*)¢" - 2 (7.29)
= b L (P((a+ 0721 )
__1-¢
T 1- q2(2l+1)'

By comparing (7.27) with (7.29) we conclude:
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THEOREM 7.5. Let p be a polynomial. Then

2

2i6. 44
(50w | g, (7.30)

(€7 q%) oo
So, beside polynomials in y*y and (e + *)/2 (cf. (4.1), (4.2)), the Haar functional can now

also be evaluated when acting on polynomials in p. Note that our derivation of (7.30) is
very indirect, without computation of moments as for (4.1).

4 4. 4 ki
o) = 5o r i [ peost)

8. Askey-Wilson Polynomials

The theorems in §7 are not the end of the story. In §6.5 we mentioned the interpretation
by Noumi and Mimachi [32] of big g-Jacobi polynomials

-n n+a+ﬁ+1, °'+1$ c
4 ! /;q,q)

q
PP (zs¢,d5q) 1= 3¢ ( ¢+, —gq*tld/c

with @ = f on quantum 2-spheres. In particular, they found an interpretation of big ¢-
Legendre polynomials PO (z; ¢, d; g) as zonal spherical elements on quantum 2-spheres. It
was tempting to relate their results to the approach of §7. A first link could be made by
proving the following
PROPOSITION 8.1. Let! € Z, and a € Span{t},,}. Then a satisfies both

(id® (¢* B - ¢~ ¥C))(®(a)) = 0 (“quantum right SO(2)-invariance”)  (8.1)
and

(x* ®id)(®(a)) =a  (left U(1)-invariance) (8.2)
if and only if

a = const. P,(O‘o)(iq_l(a'y* —va*);1,1;¢%).

The left U(1)-invariance (8.2) can also be expressed by
((A-D)®id)(®(a)) = 0. (8.3)

Recall that (7.14) is also satisfied for X := A — D. This suggests that we may gen-
eralize Proposition 8.1 such that we get interpretations of big ¢-Legendre polynomials
P,go'o)(z;c, d;q) with ¢ # d by keeping (8.2) and replacing (8.1) by

(id ® (¢2 B — ¢~3C + const. (A — D)))($(a)) = 0.

This was the starting point for some very recent results by the author (yet unpublished),
which we will summarize now.
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8.1. (0, 7)-SPHERICAL ELEMENTS

Let 0,7 € R. We will call an element a € A, (o, 7)-spherical if

-0

(id ® (iq%B —ig7¥C - q?_l—::i;-(A - D))) ((a)) = 0, (8.4)

((iq%B _igc - %_—Tl—__i;(A - D)) ® id) (3(a)) = 0. (8.5)

If + = 00 then we replace (8.5) by (8.3), and similarly for 0 = +00. Put

1 * * N - o *
por =5 (0% + (o) + 404" + (1)) +ia(a™ ~ ¢°)(a®y — 70+
+igg™" = q")(@"7" = 7@) = 4(a™ = ¢")a T~ )" = p}
Put,for I =0,1,...and n = =, -1+ 1,...,1:

o in q—-(l+a)n qn2/2

LA

= X
n 1/2 1/2
(¢% q’)lin (@)%

=2l42n -2l -2l-20
q —
X 3¢3 ( ’3_41’0 ! ;qz,tf) =

THEOREM 8.2. Let a € A. Then a is (0,7)-spherical if and only if it is a polynomial

in por-

THEOREM 8.3. Let I € Zy. The space of (o,7)-spherical elements in Span{t},,} is
one-dimensional and spanned by an element which we can represent in the following two
ways:

i
> dr T e
(8.6)

= T‘W-ﬁpz(p”; —qTTTHY gL o TTHL Tt | ),

!

Here the p; at the right hand side of (8.6) is an Askey-Wilson polynomial (7.1). So
we have given a quantum group interpretation of a two-parameter family of Askey-Wilson
polynomials.

What about the limit cases as o and/or T tend to co? We should get little or big
g-Jacobi polynomials, but these latter polynomials have discrete orthogonality measures,
while the Askey-Wilson polynomials have absolutely continuous orthogonality measure, at
least as the parameters stay within (—1,1). However, some parameters of the Askey-Wilson
polynomials in (8.6) tend to co as ¢ or 7 tend to co. Then discrete mass points are added,
cf. [6, Theorems 2.4, 2.5]. If we make, at the same time, a scale transformation, such that
the continuous spectrum shrinks, then we will arrive in the limit at infinitely many mass
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points and no continuous spectrum left. In fact, it follows immediately from (7.1), with the
normalization

pn(z;a,b,¢,d] q)

Prlmab e d]0) = T b,e,d 0))

that we have the two following limits:

5 =T (l+atb)/2 _ (1—a=b)/2 (1+a=b)/2 (1—a+b)/2
Pn (m’—q( / y—4q »q ¢ »q | q)
(8.7)
a—o0 q—n,qn+1,‘]$ . . .
— 3¢2 g, — g1 ;14,9 | = big ¢-Jacobi polynomial
and

N -z . a
Bn <§ﬁ,—2;-—q‘/2+ =g 272, g%, ¢! 7 q)

! (8.8)

oo <q-n7q'n+l

— 342 7.0 ’qm;q,q> = little g-Jacobi polynomial.
b

R. Askey told me that he has known such limit transitions already for several years, but
never published them.

We also get new expressions for the Haar functional. Let dm(z) = dmgp,c,a;q(2) be the
normalized orthogonality measure for the Askey-Wilson polynomials:

(1 — g Yabed)(q, ab,ac, ad, be,bd, cd; q)n
(1 — ¢?"labed)(q—tabed; )y

1
/ (Prpn)(z50,b,,d | g)dm(z) = Sy
-1

THEOREM 8.4. Let p be a polynomial. Let h be the Haar functional on .4. Then

1
h(p(por)) = /) P() A g2 (2),

where a= _qa'+'r+1, b = __q—a—'r+17 c= qa—'r-!—l’ d — q-a+7+1.

By putting ¢ = 7 = 0 in the Theorems 8.2-8.4, we get back the results of §7.4. If we put
o = 7 and let ¢ — oo then we approach, by (8.8), the little g-Legendre case. If we fix o
and let 7 — oo then, by (8.7), we approach the big g-Jacobi case. It should be possible to
relate this last case to the results in [32].

8.2. DUAL ¢-KRAWTCHOUK POLYNOMIALS INTERPRETED

It is possible to give an explicit matrix for the transition in the representation space of #
from the basis of eigenvectors e, for /(A — D) to a basis of eigenvectors for t'(H,), where

H,:=D[ig/"B—ig2c - L_—9 (4_D)).
7' —q
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(Observe.tha.t (8.4) can be written as (id ® H,)(®(a)) = 0 and that H, is self-adjoint if we
make U, into a x-algebra such that A* = 4, D* = D, B* = C. Then ¢! is a *-representation
of U,.)

We define dual ¢-Krawtchouk polynomials by

T ::—N—c

Ro(q™ - 45N 1 9) =3¢2(a7",¢7%,—¢" V50,47V ¢,9).
These are special g-Racah polynomials and satisfy the orthogonality relations
R. R -z _ z:—N—c; ¢ N X
= q’q)N;( nRn)(q ¢, N | q)

A+ @) (g "2 ig)e o (69D -
(1 + q—N~c)(q’ _q—c——l;q)r(_qz—2N-—c)r nm (q-—N;q)n

—N—c)n
bl

where n,m = 0,...,N. See Askey and Wilson [5] and Stanton [40].
THEOREM 8.5. t/(H,) has simple spectrum consisting of eigenvalues

2j—0 __ ,0-27 o -0
9 q +4¢° —¢ .
Tji= q_l-—-q R ]=—l,—l+1,...,l.

An eigenvector corresponding to eigenvalue z; is given by

21
Z i—n qna n(n+1)/2 (q q )nl/Z (q4l’q—2)1/2

n=0

X Rn(q—'ll—?j _ q2j—21—2a;q2a’21 ' qZ)e;—I

Noumi and Mimachi told me that, in a follow-up to [32], they have also obtained such
an interpretation of g-Krawtchouk polynomials.
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